
FTP
Copyright © 1997-2024 Ericsson AB. All Rights Reserved.

FTP 1.1.1
maj 10, 2024

Copyright © 1997-2024 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

maj 10, 2024

1.1 Introduction

1 FTP User's Guide

The FTP application provides an FTP client.

1.1 Introduction
1.1.1 Purpose
An FTP client.

1.1.2 Prerequisites
It is assumed that the reader is familiar with the Erlang programming language, concepts of OTP, and has a basic
understanding of the FTP protocol.

1.2 FTP Client
1.2.1 Getting Started
FTP clients are considered to be rather temporary. Thus, they are only started and stopped during runtime and cannot
be started at application startup. The FTP client API is designed to allow some functions to return intermediate results.
This implies that only the process that started the FTP client can access it with preserved sane semantics. If the process
that started the FTP session dies, the FTP client process terminates.

The client supports IPv6 as long as the underlying mechanisms also do so.

The following is a simple example of an FTP session, where the user guest with password password logs on to
the remote host erlang.org:

 1> ftp:start().
 ok
 2> {ok, Pid} = ftp:open([{host, "erlang.org"}]).
 {ok,<0.22.0>}
 3> ftp:user(Pid, "guest", "password").
 ok
 4> ftp:pwd(Pid).
 {ok, "/home/guest"}
 5> ftp:cd(Pid, "appl/examples").
 ok
 6> ftp:lpwd(Pid).
 {ok, "/home/fred"}.
 7> ftp:lcd(Pid, "/home/eproj/examples").
 ok
 8> ftp:recv(Pid, "appl.erl").
 ok
 9> ftp:close(Pid).
 ok
 10> ftp:stop().
 ok

The file appl.erl is transferred from the remote to the local host. When the session is opened, the current directory
at the remote host is /home/guest, and /home/fred at the local host. Before transferring the file, the current

Ericsson AB. All Rights Reserved.: FTP | 1

1.2 FTP Client

local directory is changed to /home/eproj/examples, and the remote directory is set to /home/guest/appl/
examples.

2 | Ericsson AB. All Rights Reserved.: FTP

1.2 FTP Client

2 Reference Manual

An FTP client.

Ericsson AB. All Rights Reserved.: FTP | 3

ftp

ftp
Erlang module

This module implements a client for file transfer according to a subset of the File Transfer Protocol (FTP), see RFC
959.

The FTP client always tries to use passive FTP mode and only resort to active FTP mode if this fails. This default
behavior can be changed by start option mode.

An FTP client is always started as part of the ftp application and legacy start_service function, is deprecated in OTP-24

For a simple example of an FTP session, see FTP User's Guide.

In addition to the ordinary functions for receiving and sending files (see recv/2, recv/3, send/2, and send/3)
there are functions for receiving remote files as binaries (see recv_bin/2) and for sending binaries to be stored as
remote files (see send_bin/3).

A set of functions is provided for sending and receiving contiguous parts of a file to be stored in a remote
file. For send, see send_chunk_start/2, send_chunk/2, and send_chunk_end/1. For receive, see
recv_chunk_start/2 and recv_chunk/).

The return values of the following functions depend much on the implementation of the FTP server at the remote host.
In particular, the results from ls and nlist varies. Often real errors are not reported as errors by ls, even if, for
example, a file or directory does not exist. nlist is usually more strict, but some implementations have the peculiar
behaviour of responding with an error if the request is a listing of the contents of a directory that exists but is empty.

FTP CLIENT START/STOP
The FTP client can be started and stopped dynamically in runtime by calling the ftp application API
ftp:open(Host, Options) and ftp:close(Client).

The available configuration options are as follows:

{host, Host}

Host = string() | ip_address()

{port, Port}

Port = integer() > 0

Default is 0 which aliases to 21 or 990 when used with {tls_sec_method,ftps}).

{mode, Mode}

Mode = active | passive

Default is passive.

{verbose, Verbose}

Verbose = boolean()

Determines if the FTP communication is to be verbose or not.

Default is false.

{debug, Debug}

Debug = trace | debug | disable

Debugging using the dbg toolkit.

Default is disable.

4 | Ericsson AB. All Rights Reserved.: FTP

href
href

ftp

{ipfamily, IpFamily}

IpFamily = inet | inet6 | inet6fb4

With inet6fb4 the client behaves as before, that is, tries to use IPv6, and only if that does not work it uses IPv4).

Default is inet (IPv4).

{timeout, Timeout}

Timeout = non_neg_integer()

Connection time-out.

Default is 60000 (milliseconds).

{dtimeout, DTimeout}

DTimeout = non_neg_integer() | infinity

Data connect time-out. The time the client waits for the server to connect to the data socket.

Default is infinity.

{progress, Progress}

Progress = ignore | {CBModule, CBFunction, InitProgress}

CBModule = atom(), CBFunction = atom()

InitProgress = term()

Default is ignore.

Option progress is intended to be used by applications that want to create some type of progress report, such as a
progress bar in a GUI. Default for the progress option is ignore, that is, the option is not used. When the progress
option is specified, the following happens when ftp:send/[3,4] or ftp:recv/[3,4] are called:

• Before a file is transferred, the following call is made to indicate the start of the file transfer and how large the
file is. The return value of the callback function is to be a new value for the UserProgressTerm that will be
used as input the next time the callback function is called.

CBModule:CBFunction(InitProgress, File, {file_size, FileSize})

• Every time a chunk of bytes is transferred the following call is made:

CBModule:CBFunction(UserProgressTerm, File, {transfer_size, TransferSize})

• At the end of the file the following call is made to indicate the end of the transfer:

CBModule:CBFunction(UserProgressTerm, File, {transfer_size, 0})

The callback function is to be defined as follows:

CBModule:CBFunction(UserProgressTerm, File, Size) -> UserProgressTerm

CBModule = CBFunction = atom()

UserProgressTerm = term()

File = string()

Size = {transfer_size, integer()} | {file_size, integer()} | {file_size,
unknown}

For remote files, ftp cannot determine the file size in a platform independent way. In this case the size becomes
unknown and it is left to the application to determine the size.

Ericsson AB. All Rights Reserved.: FTP | 5

ftp

Note:

The callback is made by a middleman process, hence the file transfer is not affected by the code in the progress
callback function. If the callback crashes, this is detected by the FTP connection process, which then prints an info-
report and goes on as if the progress option was set to ignore.

The file transfer type is set to the default of the FTP server when the session is opened. This is usually ASCII mode.

The current local working directory (compare lpwd/1) is set to the value reported by file:get_cwd/1, the wanted
local directory.

The return value Pid is used as a reference to the newly created FTP client in all other functions, and they are to
be called by the process that created the connection. The FTP client process monitors the process that created it and
terminates if that process terminates.

DATA TYPES
The following type definitions are used by more than one function in the FTP client API:

pid() = identifier of an FTP connection

string() = list of ASCII characters

shortage_reason() = etnospc | epnospc

restriction_reason() = epath | efnamena | elogin | enotbinary - all restrictions are not
always relevant to all functions

common_reason() = econn | eclosed | term() - some explanation of what went wrong

Exports

account(Pid, Account) -> ok | {error, Reason}
Types:

Pid = pid()

Account = string()

Reason = eacct | common_reason()

Sets the account for an operation, if needed.

append(Pid, LocalFile) ->
append(Pid, LocalFile, RemoteFile) -> ok | {error, Reason}
Types:

Pid = pid()

LocalFile = RemoteFile = string()

Reason = epath | elogin | etnospc | epnospc | efnamena | common_reason

Transfers the file LocalFile to the remote server. If RemoteFile is specified, the name of the remote file that
the file is appended to is set to RemoteFile, otherwise to LocalFile. If the file does not exists, it is created.

append_bin(Pid, Bin, RemoteFile) -> ok | {error, Reason}
Types:

Pid = pid()

Bin = binary()

6 | Ericsson AB. All Rights Reserved.: FTP

ftp

RemoteFile = string()

Reason = restriction_reason()| shortage_reason() | common_reason()

Transfers the binary Bin to the remote server and appends it to the file RemoteFile. If the file does not exist, it
is created.

append_chunk(Pid, Bin) -> ok | {error, Reason}
Types:

Pid = pid()

Bin = binary()

Reason = echunk | restriction_reason() | common_reason()

Transfers the chunk Bin to the remote server, which appends it to the file specified in the call to
append_chunk_start/2.

For some errors, for example, file system full, it is necessary to call append_chunk_end to get the proper reason.

append_chunk_start(Pid, File) -> ok | {error, Reason}
Types:

Pid = pid()

File = string()

Reason = restriction_reason() | common_reason()

Starts the transfer of chunks for appending to the file File at the remote server. If the file does not exist, it is created.

append_chunk_end(Pid) -> ok | {error, Reason}
Types:

Pid = pid()

Reason = echunk | restriction_reason() | shortage_reason()

Stops transfer of chunks for appending to the remote server. The file at the remote server, specified in the call to
append_chunk_start/2, is closed by the server.

cd(Pid, Dir) -> ok | {error, Reason}
Types:

Pid = pid()

Dir = string()

Reason = restriction_reason() | common_reason()

Changes the working directory at the remote server to Dir.

close(Pid) -> ok
Types:

Pid = pid()

Ends an FTP session, created using function open.

delete(Pid, File) -> ok | {error, Reason}
Types:

Pid = pid()

Ericsson AB. All Rights Reserved.: FTP | 7

ftp

File = string()

Reason = restriction_reason() | common_reason()

Deletes the file File at the remote server.

formaterror(Tag) -> string()
Types:

Tag = {error, atom()} | atom()

Given an error return value {error, AtomReason}, this function returns a readable string describing the error.

lcd(Pid, Dir) -> ok | {error, Reason}
Types:

Pid = pid()

Dir = string()

Reason = restriction_reason()

Changes the working directory to Dir for the local client.

lpwd(Pid) -> {ok, Dir}
Types:

Pid = pid()

Returns the current working directory at the local client.

ls(Pid) ->
ls(Pid, Pathname) -> {ok, Listing} | {error, Reason}
Types:

Pid = pid()

Pathname = string()

Listing = string()

Reason = restriction_reason() | common_reason()

Returns a list of files in long format.

Pathname can be a directory, a group of files, or a file. The Pathname string can contain wildcards.

ls/1 implies the current remote directory of the user.

The format of Listing depends on the operating system. On UNIX, it is typically produced from the output of the
ls -l shell command.

mkdir(Pid, Dir) -> ok | {error, Reason}
Types:

Pid = pid()

Dir = string()

Reason = restriction_reason() | common_reason()

Creates the directory Dir at the remote server.

8 | Ericsson AB. All Rights Reserved.: FTP

ftp

nlist(Pid) ->
nlist(Pid, Pathname) -> {ok, Listing} | {error, Reason}
Types:

Pid = pid()

Pathname = string()

Listing = string()

Reason = restriction_reason() | common_reason()

Returns a list of files in short format.

Pathname can be a directory, a group of files, or a file. The Pathname string can contain wildcards.

nlist/1 implies the current remote directory of the user.

The format of Listing is a stream of filenames where each filename is separated by <CRLF> or <NL>. Contrary
to function ls, the purpose of nlist is to enable a program to process filename information automatically.

open(Host) -> {ok, Pid} | {error, Reason}
open(Host, Opts) -> {ok, Pid} | {error, Reason}
Types:

Host = string() | ip_address()

Opts = options()

options() = [option()]

option() = start_option() | open_option()

start_option() = {verbose, verbose()} | {debug, debug()}

verbose() = boolean() (default is false)

debug() = disable | debug | trace (default is disable)

open_option() = {ipfamily, ipfamily()} | {port, port()} | {mode,
mode()} | {tls, tls_options()} | {tls_sec_method, tls_sec_method()}
| {tls_ctrl_session_reuse, boolean() (default is false)} | {timeout,
timeout()} | {dtimeout, dtimeout()} | {progress, progress()} |
{sock_ctrl, sock_opts()} | {sock_data_act, sock_opts()} | {sock_data_pass,
sock_opts()}

ipfamily() = inet | inet6 | inet6fb4 (default is inet)

port() = non_neg_integer() (default is 0 which aliases to 21 or 990 when
used with {tls_sec_method,ftps})

mode() = active | passive (default is passive)

tls_options() = [ssl:tls_option()]

tls_sec_method() = ftps | ftpes (default is ftpes)

sock_opts() = [gen_tcp:option() except for ipv6_v6only, active, packet,
mode, packet_size and header

timeout() = integer() > 0 (default is 60000 milliseconds)

dtimeout() = integer() > 0 | infinity (default is infinity)

progress() = ignore | {module(), function(), initial_data()} (default is
ignore)

module() = atom()

function() = atom()

initial_data() = term()

Ericsson AB. All Rights Reserved.: FTP | 9

ftp

Reason = ehost | term()

Starts a FTP client process and opens a session with the FTP server at Host.

If option {tls, tls_options()} is present, the FTP session is transported over tls (ftps, see RFC 4217).
The list tls_options() can be empty. The function ssl:connect/3 is used for securing both the control
connection and the data sessions.

The suboption {tls_sec_method, tls_sec_method()} (defaults to ftpes) when set to ftps will connect
immediately with SSL instead of upgrading with STARTTLS. This suboption is ignored unless the suboption tls
is also set.

The option {tls_ctrl_session_reuse, boolean()} (defaults to false) when set to true the client will
re-use the TLS session from the control channel on the data channel as enforced by many FTP servers as (proposed
and implemented first by vsftpd).

The options sock_ctrl, sock_data_act and sock_data_pass passes options down to the underlying
transport layer (tcp). The default value for sock_ctrl is []. Both sock_data_act and sock_data_pass
uses the value of sock_ctrl as default value.

A session opened in this way is closed using function close.

pwd(Pid) -> {ok, Dir} | {error, Reason}
Types:

Pid = pid()

Reason = restriction_reason() | common_reason()

Returns the current working directory at the remote server.

recv(Pid, RemoteFile) ->
recv(Pid, RemoteFile, LocalFile) -> ok | {error, Reason}
Types:

Pid = pid()

RemoteFile = LocalFile = string()

Reason = restriction_reason() | common_reason() |
file_write_error_reason()

file_write_error_reason() = see file:write/2

Transfers the file RemoteFile from the remote server to the file system of the local client. If LocalFile is
specified, the local file will be LocalFile, otherwise RemoteFile.

If the file write fails (for example, enospc), the command is aborted and {error,
file_write_error_reason()} is returned. However, the file is not removed.

recv_bin(Pid, RemoteFile) -> {ok, Bin} | {error, Reason}
Types:

Pid = pid()

Bin = binary()

RemoteFile = string()

Reason = restriction_reason() | common_reason()

Transfers the file RemoteFile from the remote server and receives it as a binary.

10 | Ericsson AB. All Rights Reserved.: FTP

href
href
href

ftp

recv_chunk_start(Pid, RemoteFile) -> ok | {error, Reason}
Types:

Pid = pid()

RemoteFile = string()

Reason = restriction_reason() | common_reason()

Starts transfer of the file RemoteFile from the remote server.

recv_chunk(Pid) -> ok | {ok, Bin} | {error, Reason}
Types:

Pid = pid()

Bin = binary()

Reason = restriction_reason() | common_reason()

Receives a chunk of the remote file (RemoteFile of recv_chunk_start). The return values have the following
meaning:

• ok = the transfer is complete.

• {ok, Bin} = just another chunk of the file.

• {error, Reason} = transfer failed.

rename(Pid, Old, New) -> ok | {error, Reason}
Types:

Pid = pid()

CurrFile = NewFile = string()

Reason = restriction_reason() | common_reason()

Renames Old to New at the remote server.

rmdir(Pid, Dir) -> ok | {error, Reason}
Types:

Pid = pid()

Dir = string()

Reason = restriction_reason() | common_reason()

Removes directory Dir at the remote server.

send(Pid, LocalFile) ->
send(Pid, LocalFile, RemoteFile) -> ok | {error, Reason}
Types:

Pid = pid()

LocalFile = RemoteFile = string()

Reason = restriction_reason() | common_reason() | shortage_reason()

Transfers the file LocalFile to the remote server. If RemoteFile is specified, the name of the remote file is set
to RemoteFile, otherwise to LocalFile.

send_bin(Pid, Bin, RemoteFile) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: FTP | 11

ftp

Pid = pid()

Bin = binary()

RemoteFile = string()

Reason = restriction_reason() | common_reason() | shortage_reason()

Transfers the binary Bin into the file RemoteFile at the remote server.

send_chunk(Pid, Bin) -> ok | {error, Reason}
Types:

Pid = pid()

Bin = binary()

Reason = echunk | restriction_reason() | common_reason()

Transfers the chunk Bin to the remote server, which writes it into the file specified in the call to
send_chunk_start/2.

For some errors, for example, file system full, it is necessary to to call send_chunk_end to get the proper reason.

send_chunk_start(Pid, File) -> ok | {error, Reason}
Types:

Pid = pid()

File = string()

Reason = restriction_reason() | common_reason()

Starts transfer of chunks into the file File at the remote server.

send_chunk_end(Pid) -> ok | {error, Reason}
Types:

Pid = pid()

Reason = restriction_reason() | common_reason() | shortage_reason()

Stops transfer of chunks to the remote server. The file at the remote server, specified in the call to
send_chunk_start/2 is closed by the server.

start_service(ServiceConfig) -> {ok, Pid} | {error, Reason}
Types:

ServiceConfig = [{Option, Value}]

Option = property()

Value = term()

Dynamically starts an FTP session after the ftp application has been started.

Note:

As long as the ftp application is operational, the FTP sessions are supervised and can be soft code upgraded.

stop_service(Reference) -> ok | {error, Reason}
Types:

Reference = pid() | term() - service-specified reference

12 | Ericsson AB. All Rights Reserved.: FTP

ftp

Reason = term()

Stops a started FTP session.

type(Pid, Type) -> ok | {error, Reason}
Types:

Pid = pid()

Type = ascii | binary

Reason = etype | restriction_reason() | common_reason()

Sets the file transfer type to ascii or binary. When an FTP session is opened, the default transfer type of the server
is used, most often ascii, which is default according to RFC 959.

user(Pid, User, Password) -> ok | {error, Reason}
Types:

Pid = pid()

User = Password = string()

Reason = euser | common_reason()

Performs login of User with Password.

user(Pid, User, Password, Account) -> ok | {error, Reason}
Types:

Pid = pid()

User = Password = string()

Reason = euser | common_reason()

Performs login of User with Password to the account specified by Account.

quote(Pid, Command) -> [FTPLine]
Types:

Pid = pid()

Command = string()

FTPLine = string()

Note:

The telnet end of line characters, from the FTP protocol definition, CRLF, for example, "\\r\\n" has been removed.

Sends an arbitrary FTP command and returns verbatim a list of the lines sent back by the FTP server. This function
is intended to give application accesses to FTP commands that are server-specific or that cannot be provided by this
FTP client.

Note:

FTP commands requiring a data connection cannot be successfully issued with this function.

ERRORS
The possible error reasons and the corresponding diagnostic strings returned by formaterror/1 are as follows:

Ericsson AB. All Rights Reserved.: FTP | 13

href

ftp

echunk

Synchronization error during chunk sending according to one of the following:

• A call is made to send_chunk/2 or send_chunk_end/1 before a call to send_chunk_start/2.

• A call has been made to another transfer function during chunk sending, that is, before a call to
send_chunk_end/1.

eclosed

The session is closed.

econn

Connection to the remote server is prematurely closed.

ehost

Host is not found, FTP server is not found, or connection is rejected by FTP server.

elogin

User is not logged in.

enotbinary

Term is not a binary.

epath

No such file or directory, or directory already exists, or permission denied.

etype

No such type.

euser

Invalid username or password.

etnospc

Insufficient storage space in system [452].

epnospc

Exceeded storage allocation (for current directory or dataset) [552].

efnamena

Filename not allowed [553].

SEE ALSO
file(3) filename(3) and J. Postel and J. Reynolds: File Transfer Protocol (RFC 959).

14 | Ericsson AB. All Rights Reserved.: FTP

href

	FTP
	FTP User's Guide
	Introduction
	Purpose
	Prerequisites

	FTP Client
	Getting Started

	Reference Manual
	ftp
	account/2
	append/2
	append/3
	append_bin/3
	append_chunk/2
	append_chunk_start/2
	append_chunk_end/1
	cd/2
	close/1
	delete/2
	formaterror/1
	lcd/2
	lpwd/1
	ls/1
	ls/2
	mkdir/2
	nlist/1
	nlist/2
	open/1
	open/2
	pwd/1
	recv/2
	recv/3
	recv_bin/2
	recv_chunk_start/2
	recv_chunk/1
	rename/3
	rmdir/2
	send/2
	send/3
	send_bin/3
	send_chunk/2
	send_chunk_start/2
	send_chunk_end/1
	start_service/1
	stop_service/1
	type/2
	user/3
	user/4
	quote/2

